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Abstract—Most engineering problems involving beam-like 

structural elements are approximations to the structural problem 

involving plates connected by connectors to metal beams. Technical 

standards define some parameters (such as effective width), but most 

technical standards only consider the parameters of span length and 

distance between adjacent beams. Numerical and experimental works 

found in the literature show that this effective width depends on several 

other parameters, such as the width and thickness of the concrete slab 

and the type of loading. 

Shear lag effect is an unexpected major phenomenon that controls 

the design of tall buildings using framed tube system. There is much 

research with different analysis methods have been conducted to study 

the effect of shear lag not only in box girder, but also in tube structures.  

The present paper focus on the additional weight of solar energy 

systems on roofs and platforms. These structures weren’t design and 

calculated for this additional weight thereby its behaviour should be 

known. 

 

Index Terms— Shear Lag, Effects, Steel Tension, Tube Structural 

Systems, Tall Buildings.  

I. INTRODUCTION 

Occurrence of shear lag in buildings is reported in the 

literature for several years ago and all over the world [1-8], but 

explanation of its origin and comprehensive studies of it are 

lacking. Historically, the problem of Shear Lag effects was first 

approached by Von Karmen and successively by several 

authors. Building suffers from shear lag effects which cause a 

nonlinear distribution of axial stresses along the face of the 

building. Major advancements in structural engineering have 

been the development of different structural systems that allow 

for higher buildings. As the height of the building increase, the 

lateral resisting system becomes more important than the 

structural system that resists the gravitational loads. Also, 

introducing renewable energy systems at the top of building 

cause an extra height (such as solar systems) and vibrations 

(such as wind power) that affect the structure equilibrium that 

was firstly designed. 

The need to consider the effects of Shear Lag in the design 

of structures initially arose in the field of aeronautical 

engineering [9-14] but immediately naval architects [15-17] 
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and civil engineers [18-19] were faced with the need to address 

the same problem. 

However, only in 1990 a methodical study [20] allowed the 

identification of parameters that governs the effects of the 

phenomenon on the behaviour of wide-beam beams. The results 

of the studies were used as the basis for the wide chord design 

rules included in the most recent international legislation. 

The objective of the present paper is to present the 

calculation structure using shear lag. Shear lag is a concept used 

to explain uneven tension distribution in connected elements. 

Further conclusions can be made for renewable energy systems 

decentralization on the top of the buildings. 

II. DISCRETIZATION OF STRUCTURAL MODELS 

For the study, authors intend to use a refined mesh, whenever 

possible with elements similar to a square and that respect the 

applicability conditions of the models used in order to be led to 

good analytical results. 

For the present study, 3 types of models are used. The first 

two models were developed to reproduce wall elements by bar 

elements and the third one is a plate model. 

- The 1st Model is based only on the axial deformability of 

the section 

- The 2nd Model considers the deformability of the section 

by shear, by bending and axial 

- The 3rd Model is a plate model, using the finite element 

formulation.  

A. 1st Model 

In this model it is deduced by reproducing the axial 

deformability of wall elements with bar elements: Both the 

bending deformability and the shear deformability do not enter 

the mathematical deduction of the model. 

The bar model itself, through its geometric characteristics 

obtained based on the axial deformability of a plate element, 

defines areas and inertia that give rise to these two types of 

deformability. The shear deformability itself is intrinsically 

linked to the global model, and it is to be expected that when it 

assumes an important value, as in the case of low-rise buildings 

(2 and 4 store models). This model departs from the theory of 

Strength of Materials and is illustrated in Figure 1.  
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Fig. 1 - Applying a unit vertical displacement to a plate element 

From Hooke's Law,  =  E, and  

𝛿𝑉 = ∫ 𝜀  𝑑𝑥3
ℎ

0
,  

 

one gets the following relation, 
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As a unit displacement V was applied, one gets: 
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where A is the cross-sectional area of the wall element, i.e. 

A = b e, E the modulus of elasticity and h the height of the 

element. 

Reproducing the same wall element with bar elements, the 

model illustrated in Figure 2 is obtained. 

 
Fig. 2 – First model application 

 

Knowing the relationship for a wall element, 
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 E A

h
=

E × b ×e 

h
, in each bar the following relationship between 

the diagonals and the vertical bars is obtained: 
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In this formulation it was assumed that Av = 3 Ad which 

imposes the following relations between the sides of the 

element: 

 

 
Fig. 3 – First model sides unit relations 

 

Developing expressions (2) and (3) we obtain the 

relationship of the areas of the vertical bars and the diagonals 

with the base wall element, allowing the calculation of the 

diagonals (Ad): 
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The calculation of the area of the columns (Ad) is obtained 

by replacing (4) in (3): 
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  (5) 

Taking Figure 4 as a reference, it is possible to obtain the 

areas and moments of inertia for the various elements. The 

vertical elements (pillars) are intended to reproduce the 

mechanical characteristics of the wall, the diagonals 

functioning as struts. Each Column reproduces half the width 

of the wall (b/2) while maintaining the height (h) and thickness 

(e). Diagonals are only assigned an area (4). 

 

 
Fig. 4 - Model of bars 
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Expressions (4) and (5) were deduced solely based on the 

axial deformation of a wall element. In addition to the areas, the 

inertias in their bending planes are assigned to the vertical and 

horizontal bars: 

 

B. 2nd Model - Model of connecting struts (rods) and 

columns  

This model intends to simulate the load-bearing walls using 

struts and uprights as illustrated in Figure 5. 

 
Fig. 5 - Model of connecting struts and tie rods 

To simulate the areas of rigid struts (Am) and areas of Tie 

Rods (Am). With this aim, we consider the three independent 

displacements as indicated in the figure and determine stiffness 

matrices for both for the rigid wall and for the connecting struts 

rod and tie rod system. 

The torsion factors are used to consider the uniform torsion 

of the wall, taking the value of: 
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The inertia of the cross section for bending outside the plane 

of the wall must also be taken into account in the tie rods, the 

value of this inertia being the following: 
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To obtain the Wall Stiffness Matrix (Plate) the displacement 

fields, the deformation fields and the stress fields installed on 

the plate are calculated. The displacement fields for each of the 

independent displacements are those indicated in the following 

table, representing u the displacement according to x and v the 

displacement according to y, as shown in Table 1. 

 

 

 

 

 

TABLE I: Displacement fields installed on the plate for 

independent displacements 

Displacement u v 
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The associated deformation fields are: 
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and are listed in Table 2. 

 

TABLE II: Deformation fields installed on the plate for 

independent displacements 
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and are shown in Table 3. 

 

TABLE III - Stress fields installed on the plate for 

independent displacements 

 
The stiffness matrix associated with the chosen independent 

displacements are given by: 
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In the notation indicated it is used the Einstein sum 

convention, having in addition xy = 2xy. 

Carrying out the integrations, the following stiffness matrix 

is obtained: 
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The determination of the stiffness matrix of this model 

follows the principles used previously. For illustrative 

purposes, the schematic deformations for the three 

displacements in Figure 6 are indicated. Table 4 shows the 

forces installed in the elements, for independent displacements. 

 
Fig 6 - Deformed models of struts and columns for 

independent displacements 

 

TABLE IV - Efforts on the struts and struts model elements for unit independent displacements 
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C. Determining the areas of connecting strut rods and 

columns 

The determination of the areas of the different elements is 

achieved by equating the different terms of the calculated 

stiffness matrices. They are obtained like this: 
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The term relating to the shear effect directly provides the 

area to be considered on the connecting strut rods, obtaining the 

following expression:  
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The cross term between bending and shearing also gives the 

area of the connecting strut rods, obtaining the following 

expression: 
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These two expressions are identical in every way, it is 

sufficient to comply with the definition of the angle :  

tg
B

H
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The area of the connecting strut rods can be rewritten as 

follows 
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The equations relating to axial forces and bending are 

linearly independent, obtaining a relationship between width 

and length so that the system of equations is possible: 
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This quadratic equation gives only one real root with 

physical meaning: 

  1  

With current values of Poisson's ratio, there are 

relationships between the base of the wall and its height from 

0.9 to 1.0. The area of the columns is determined using, for 

example, the equation relating to the axial force: 
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In order for the column area to be positive, it is necessary to 

obtain the following relationship: 
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The most current values that can be established for this 

relationship vary from 0.71 (considering a null Poisson 

Coefficient) to 0.63 (Poisson Coefficient equal to 0.2). It is 

usual practice not to consider the Poisson Ratio in this type of 

approach, obtaining the following relationships for the 

following areas of the structural elements: 
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It is important to know the limitations regarding the shape 

of the wall element, which must obey the following inequality: 
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One can thus summarize the relations presented above to the 

following two: 
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For H=B=0.75  Ab = 0.106066 m2; Am = 0.0375 m2. 

Limitation to model dimensions 
1

2
<

B

H
 is satisfied. 

 

Results 

 

For calculation, elements measuring 0.75 m by 0.75 m were 

used and shown in Figure 7. 

 

 
Fig. 7 - Modelling of wall elements by bar elements and by plate elements 
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In this modelling, the axial rigidity of the wall is maintained. 

This modelling reproduces a wall element with bar elements. 

The non-consideration of flat sections leads to a decrease in the 

model's rigidity. 
2 floors   (displacements at the top) 4 floors   (displacements at the top) 8 floors   (displacements at the top)

1ºMod R.M. N/Shear Def. R.M.  Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def.
S.A.P. S.A.P. S.A.P. S.A.P. S.A.P. S.A.P.

0,238240059 0,671982636 0,549245067 0,79923553 0,912896092 1,016772909

0,234750451 0,809769787 0,496905338 0,801196742 0,806292317 0,929730225

0,382763226 1,381149601 0,6744421 1,114239969 0,908128982 1,056174749

 
 

 
12 floors   (displacements at the top) 16 floors   (displacements at the top)

1ºMod R.M. N/Shear Def. R.M.Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def.

S.A.P. S.A.P. S.A.P. S.A.P.

1,029572812 1,081640924 1,07128685 1,101761805

0,930790253 0,994122565 0,986042483 1,023781594

0,925627282 0,992693232 0,984149454 1,024259164

 
 

TABLE I - Table of Horizontal Displacements for the 1st Model 
 

2 floors   (displacements at the top) 4 floors   (displacements at the top) 8 floors   (displacements at the top)

2ºMod R.M. N/Shear Def. R.M. Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def.

S.A.P. S.A.P. S.A.P. S.A.P. S.A.P. S.A.P.

0,392105816 1,10597815 0,748598351 1,089325031 0,945027524 1,052560519

0,347811618 1,199773371 0,663595451 1,069963377 0,876288856 1,010442761

0,279227621 1,007555302 0,535698776 0,885023321 0,815948715 0,948966993

  
12 floors   (displacements at the top) 16 floors   (displacements at the top)

2ºMod R.M. N/Shear Def. R.M. Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def.

S.A.P. S.A.P. S.A.P. S.A.P.

1,000809141 1,051422601 1,022105036 1,051180913

0,944224984 1,008471414 0,975300891 1,012628885

0,972435293 1,0428927 0,997238817 1,037881994
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Table II - Table of Horizontal Displacements for the 2nd Model 
2 floors   (displacements at the top) 4 floors   (displacements at the top) 8 floors   (displacements at the top)

3ºMod R.M. N/Shear Def. R.M. Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def.

S.A.P. S.A.P. S.A.P. S.A.P. S.A.P. S.A.P.

0,353311194 0,996553596 0,709155635 1,031929851 0,961735193 1,071169324

0,317340769 1,094664426 0,636009942 1,025485248 0,915620088 1,05579534

0,355062268 1,281194424 0,650823505 1,075219893 0,914670873 1,063783117

 
 

Table III - Table of Horizontal Displacements for the 3rd Model 
12 floors   (displacements at the top) 16 floors   (displacements at the top)

3ºMod R.M. N/Shear Def. R.M.Y/Shear Def. R.M. N/Shear Def. R.M. Y/Shear Def.

S.A.P. S.A.P. S.A.P. S.A.P.

1,032528278 1,084745856 1,063859862 1,09412354

1,005867788 1,074308483 1,045672767 1,085694126

1,003775748 1,076503914 1,043770047 1,086309636

 
 

 

 - Relation between the horizontal displacements obtained 

from the Strength of Materials and those obtained by the 3 

models under analysis using the SAP2000 calculation program. 

The parameter  could be a good indicator between the 

theory of Strength of Materials, which considers the flat 

sections after deforming, and the proposed models that 

essentially intend to show the differences between the sections 

obtained by the theory of Strength of Materials and the sections 

that are obtained with each of the formulations presented. 

From here it can be concluded when it is important to 

consider the Shear Lag effect, that is, the fact that we approach 

or distance ourselves from the flat sections and which are the 

various effects directly linked. 

Almost all models correctly translate the various deformities 

with the exception of the 1st Mod. for the reasons already 

described above. Obviously, as we increase in height and the 

deformability by shear is no longer important, this model begins 

to approach the others as well as the theory of Strength of 

Materials itself. 

The parameter  indicates us in the idealized model to 

simulate the shear wall Section when using a certain type of 

model, we begin to move away from the linearity of the 

sections. This factor may be important as it is a good indicator 

of errors, we are making regarding the theory that sections 

remain flat after deforming. 

The fact that the parameter  moving away or approaching 1 

indicates the greater or lesser flexibility of the section. 

Parameter indicating the approximation of vertical 

displacements obtained by the models described to the 

theory of Resistance of Materials 

 

TABLE IV - Relationship between areas of vertical displacement diagrams obtained by the models described and by the Strength 

of Materials for 2 floors 
2 floors   (displacements at the top)

SAP2000 (1ºMod) - RM SAP2000 (2ºMod) - RM SAP2000 (3ºMod) - RM

 RM                         RM                         RM

0,278119471 0,161154407 0,178152746

0,421644423 0,347348567 0,385621204

0,412667506 0,408695027 0,436692248
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TABLE V- Relationship between areas of vertical displacement diagrams obtained by the models described and by the Strength 

of Materials for 4 floors 
4 floors   (displacements at the top)

SAP2000 (1ºMod) - RM SAP200 (2ºMod) - RM SAP2000 (3ºMod) - RM

 RM                         RM                         RM

0,085438123 0,075306201 0,079762681

0,208860242 0,117119126 0,143937157

0,256095202 0,167402449 0,198502199

 
 

 

TABLE VI - Relationship between areas of vertical displacement diagrams obtained by the models described and by the Strength 

of Materials for 8 floors 

 
8 floors   (displacements at the top)

SAP2000 (1ºMod) - RM SAP2000 (2ºMod) - RM SAP2000 (3ºMod) - RM

 RM                         RM                         RM

0,12649386 0,055577265 0,082795592

0,076859581 0,045828261 0,089067749

0,104111953 0,069035691 0,104635137

 
 

TABLE VII - Relationship between areas of vertical displacement diagrams obtained by the models described and by the 

Strength of Materials for 12 floors 
12 floors   (displacements at the top)

SAP2000 (1ºMod) - RM SAP2000 (2ºMod) - RM SAP2000 (3ºMod) - RM

 RM                         RM                         RM

0,120311169 0,05359803 0,084576801

0,069969337 0,036709153 0,086960417

0,081040935 0,050432304 0,093967488

 
 

 

TABLE VIII - Relationship between areas of vertical displacement diagrams obtained by the models described and by the 

Strength of Materials for 16 floors 
16 floors   (displacements at the top)

SAP2000 (1ºMod) - RM SAP2000 (2ºMod) - RM SAP2000 (3ºMod) - RM

 RM                         RM                         RM

0,110617655 0,052148998 0,088165015

0,067403684 0,029273879 0,088421207

0,072851125 0,046047483 0,092225179
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 These values are obtained by direct integration of the area 

diagrams of displacements for each situation. 

This parameter may be indicative of the approximation 

between the models presented and the theory of Strength of 

Materials that considers flat sections. 

III. CONCLUSION 

From the analysis of the 3 proposed models, it was concluded 

that for lower levels and mainly for sections with Flanged 

Sections Shear Wall, almost forming a rectangle, there is a 

strong warping (flexural torsional buckling) effect on these 

walls, with the remaining sections showing a reasonable 

approximation of the theory of Strength of Materials, although 

for low levels the Shear Lag effect becomes important although 

it dissipates. this effect quickly in height. (Roughly at 8 levels 

this effect is practically no longer felt). The parameter  

defined in two ways clearly indicates that the Shear-Lag is 

important for low floors. We can analyze the numerous results 

presented so far both graphically and analytically that we are 

directly or indirectly led to the same conclusion.  
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